
Load Balancing with nftables II

Laura García

Zen Load Balancer
October 2016 - Tokyo, Japan

lauragl@sofintel.net

Abstract
The load balancing with netfilter framework presented in the last
Netdev 1.1 allowed to design a use case based prototype with
nftables in order to create the infrastructure required to build a
complete load balancer. In this document we present the advances
of the developments that will allow to build a complete load
balancer with nftables and more performance compared to lvs.

In this document we present the developments done to achieve
those requirements, the review of some use cases to show the
definitive syntax, benchmarks and the work to do to continue
improving the performance obtained.

Keywords
Load Balancing, nftables, netfilter, lvs, ipvs, dnat, snat, dsr, direct
routing, direct server return, scalability, benchmark, performance.

 Introduction
This paper presents the developments done to build a
complete load balancer with nftables infrastructure (kernel
side, libnftnl and nftables user space tool), then the review
of some use cases with the definitive syntax, benchmarks
of lvs and nftables use cases and finally, the next steps to
progress this work.

Development Evolution
In order to provide packet scheduling in the nft
infrastructure, we’ve included two new expressions
number generation (nft_numgen) and hash (nft_hash).

Numgen
nft_numgen is based on the xt_statistiscs extension (from
iptables) and provides the ability to scale the values
generated with two different modes or operations available:
incremental and random.
The numgen expression uses mod as a modulus and offset
as optional parameter to be added to the value generated.

The incremental operation (inc) is a connection counter
that act as a round robin scheduler. Example:

ip daddr <vip> tcp dport <vport> dnat to numgen inc mod 2 \

map { 0 : <ipaddr0>, 1 : <ipaddr1> }

This expression also permits to generate series of
incremental numbers with an offset like:

meta mark set numgen inc mod 3 offset 100

In the example above, the connections are marked
following the series: 100, 101, 102, 100, …

The random operation (random) generates a random
number which acts as a weight scheduler. Example:

ip daddr <vip> tcp dport <vport> dnat to numgen random \

mod 2 map { 0 : <ipaddr0>, 1 : <ipaddr1> }

This expression also permits to generate series of random
numbers with an offset like:

meta mark set numgen random mod 3 offset 100

In the example above, the connections are marked
following a series of numbers between 100 and 102.

Hash
nft_hash generates a hash for any selector concatenation
and currently, only one mode is available: Jenkins hash.
Within a load balancing scheme, this expression will be
used to create persistent connections. Example:

ip daddr <vip> tcp dport <vport> dnat to jhash \

ip saddr mod 2 map { 0: <ipaddr0>, 1: <ipaddr1> }

The example above performs a nat based on the source ip
address, and all connections from such ip address will be
assigned to a certain destination address in the map.

Another example could be the packet marking based on the
hash from the source ip address.

meta mark set jhash ip saddr mod 3 seed 0xabcd \

offset 100

The marks in this case generates hash numbers between
100 and 102.

Requirements
The requirements in order to use the numgen and hash
extensions are the following:

• kernel version >= 4.8.0-rc4+ (nf-next branch at
the time of writing this paper)

• libnftnl > 1.0.6
• nftables >= 0.7 (not yet released at the time of

writing this paper)

Use Cases Review
In this section we present the definitive syntax to be used
in nftables for every use case studied.

sNAT Topology
The sNAT topology requires 4 steps to complete a flow,
where the client connects to a certain virtual IP and port
and then, the load balancer changes the source and
destination ip addresses to the scheduled backend.
The backend then returns the response to the load balancer
and the load balancer to the client masquerading the
connection.

Figure 1. Load balancing with sNAT Topology.

The nft syntax to be able to behave as sNAT load balancer
is the following:

table ip nat {

 chain prerouting {

 type nat hook prerouting priority 0; policy accept;

 ip daddr <ip_lb> tcp dport <port_lb> dnat to \

 numgen inc mod 3 map { \

 0 : <ip_bck0>, \

 1 : <ip_bck1>, \

 2 : <ip_bck2> }

 }

 chain postrouting {

 type nat hook postrouting priority 100; policy accept;

 masquerade

 }

}

The packets in prerouting stage going to a certain virtual ip
and port will be natted using a round robin scheduler
between the three available backends. Finally, the
postrouting chain needs to perform a masquerade in order
to hide the backends ip addresses to the client.

dNAT Topology
In the case of dNAT topology, 4 step packet flow will take
in place. The client access to the virtual ip and port, and the
output packet from the load balancer changes the
destination address so the backend is able to see the real ip
address from the client.

Figure 2. Load balancing with dNAT Topology.

The nft syntax to be able to behave as dNAT load balancer
is the following:

table ip nat {

 chain prerouting {

 type nat hook prerouting priority 0; policy accept;

 ip daddr <ip_lb> tcp dport <port_lb> dnat to \

 numgen random mod 3 map { \

 0 : <ip_bck0>, \

 1 : <ip_bck1>, \

 2 : <ip_bck2> }

 }

 chain postrouting {

 type nat hook postrouting priority 100; policy accept;

 }

}

The dNAT case implementation in nftables is quite similar
than sNAT, only the masquerade should be discarded from
the postrouting chain. Create the chain postrouting
In the example above, the numgen expression will use a
random operation to create a weighted scheduler among
the backend ip addresses.

DSR Topology (non connection oriented)
The DSR topology requires 3 steps to complete a flow,
where the client connects to a certain virtual IP and port
and then, the load balancer changes the source and
destination MAC addresses to the scheduled backend.
The backend then returns the response to the client directly,
so this approach permits only the incoming packets to pass
through the load balancer at L3 level.

In this case, as the flow is not connection oriented, the load
balancer doesn’t need to gather connections knowledge and
only it take cares about packets.

Figure 3. Load balancing with DSR Topology.

The nft syntax to be able to behave as DSR non-connection
oriented load balancer is the following:

table netdev filter {

 chain ingress {

 type filter hook ingress device <if_lb> \

 priority 0; policy accept;

 ip daddr <ip_lb> udp dport <port_lb> \

 ether saddr set <mac_lb> \

 ether daddr set numgen inc mod 3 \

 map { \

 0: <mac_bck0>, \

 1: <mac_bck1>, \

 2: <mac_bck2> } \

 fwd to <if_lb>

 }

}

We can achieve this architecture from ingress with just one
rule in order to set the source and destination MAC
addresses for every packet with a round robin scheduling
method to distribute the packets traffic and then, send to
the device again.

DSR Topology (connection oriented)
For DSR topology with connection oriented approach
needs the behavior presented in the section above but
requires to add additional knowledge to maintain every
flow in the assigned backend. There is no conntrack
information that we can use from ingress.
Then, for this approach we propose to take advantage of
the hash expression in order to generate a kind of
persistence with the concatenation of source IP address and
source port.

The nft syntax to be able to behave as DSR connection
oriented load balancer is the following:

table netdev filter {

 chain ingress {

 type filter hook ingress device <if_lb> \

 priority 0; policy accept;

 ip daddr <ip_lb> tcp dport <port_lb> \

 ether saddr set <mac_lb> \

 ether daddr set \

 jhash ip saddr . tcp sport mod 3 seed 0xabcd \

 map { \

 0: <mac_bck0>, \

 1: <mac_bck1>, \

 2: <mac_bck2> } \

 fwd to <if_lb>

 }

}

Same behavior than the non-oriented approach but it’s
proposed to use a hashing function instead of using
incremental numgen for two reasons: create a traffic
distribution and maintain a persistence for every flow.

Benchmarks
It’s presented some benchmarks to know the state of the
load balancing with nftables approach and to compare the
performance with LVS that is being used as a reference.

Lab Environment
The lab environment used for these benchmarks are the
following:

1. Hardware:
• 2 clients, 3 backends & 1 LB
• 2 cores (3.33 GHz each) i5 660 with 2

threads/core, 4GB RAM @1333 MHz
• 2 Intel Gigabit Network 82578DM & 82574L

per machine
2. Software:

• Kernel version 4.8.0-rc4+ branch nf-next
• System tuning considerations from József

paper
• HTTP protocol transferring 229 bytes per

connection (client wrk/server nginx)
3. Considerations:

• Both IPv4 & IPv6
• LB was never saturated during a test of 30

seconds
• LVS performance used as a reference

IPv4 Benchmarks
During the IPv4 benchmarking we obtained similar
performance between LVS-SNAT than NFT-SNAT, but
NFT-DNAT performs better as the masquerade is not
required.

Figure 4. IPv4 benchmark results.

But, what is quite significant is the improvement of the
NFT-DSR compared to LVS-DSR, where we get almost 10
times faster with the nftables approach.

In the graph below is shown the performance for every
topology of nft compared to lvs regarding the per cent of
CPU consumed and the number of flows per second.

Figure 5. IPv4 performance graph comparing LVS and NFT.

IPv6 Benchmarks
The IPv6 performance obtained with the same use cases
than the previous section are better in general with both lvs
and nft approaches but similar if we compared the results
between them.

Figure 6. IPv6 benchmark results.

In regards to the performance of NFT-DSR compared to
LVS-DSR is about almost 6 times faster.

Figure 7. IPv6 performance graph comparing LVS and NFT.

The performance obtained with nft and lvs natted are
similar, but nft from ingress makes the big difference.

Work To Do
In order to progress with the work of providing high
performance load balancing capabilities in the nftables
infrastructure, some work to be done are:

• The implementation of a lightweight NAT from
the hook ingress to improve the NAT results.

• User space rule manager to compile more
complex schedulers than round robin and weight,
and manage different topologies easily.

• Health checks monitor with layered support and
allowing internal and external monitors, so the
load balancer doesn’t need to behave as a monitor.

Acknowledgements
From the Zen Load Balancer Team, we would like to thank
Pablo Neira for his mentoring during this development and
his continuous support. We’ve to thank as well to the
Outreachy Program for supporting this development and
Cumulus Network for their invitation to the Netdev 1.2.

Bibliography
1. Nftables wiki, http:// http://wiki.nftables.org

Author Biography
Laura García studied Computer Science in the University
of Seville and she has been a Software Engineer for HP
and Schneider Electric, with more than 10 years of
experience with embedded Linux systems. Currently, she is
CEO and co-founder of Sofintel IT Engineering SL
company in order to continue the development and
evolution of the open source project Zen Load Balancer.

http://http://wiki.nftables.org
http://http://wiki.nftables.org

	Introduction
	Development Evolution
	Numgen
	Hash
	Requirements

	Use Cases Review
	sNAT Topology
	dNAT Topology
	DSR Topology (non connection oriented)
	DSR Topology (connection oriented)

	Benchmarks
	Lab Environment
	IPv4 Benchmarks
	IPv6 Benchmarks

	Work To Do
	Acknowledgements
	Bibliography
	Author Biography

