
Load Balancing with nftables

Laura García

Zen Load Balancer
Seville, Spain

lauragl@sofintel.net

Abstract
The motivation to design a load balancer prototype with nftables
is to provide a flexible network management system with
complete load balancing capabilities for Linux-based systems, but
also improve Layer 4 load balancing performance using the
nftables infrastructure. The iptables approach in this topic lacks
features for a complete and high performance load balancing
system and those shortcomings have been taken into account in
order to be solved in nftables.

Keywords
Load Balancing, nftables, conntrack, netfilter, Linux networking,
iptables, LVS.

 Introduction
LVS allows very easy deployment of Linux-based load
balancers. Probably less well-known is the fact that you
can also use iptables rules using the existing matches and
targets to implement many of the core load balancing
features such as different scheduling approaches and
dispatching methods, flow persistence, etc.

This paper discusses the implementation of a Linux-
based load balancers using iptables, we will describe our
ruleset configurations, lessons learned from integration
issues with Netfilter and other networking software and
existing limitations. Moreover, we have planed a prototype
based on nftables, detailing what is missing and what we
consider good to have to improve its load balancing
capabilities.

Load Balancing Solutions
The most popular and extended solution currently available
for load balancing at layer 4 is Linux Virtual Server. Less
well known solution but provides a very good results is to
perform load balancing using iptables extensions. Finally,
such iptables approach and knowledge gathered will be
used to present a design of a high performance load
balancing prototype with nftables.

LVS
LVS is a wide used load balancer at layer 4 which provides
a full set of complete and versatile schedulers, several
forwarding methods like Direct Routing, tunneling and
sNAT, and additionally some basic integrated health
checks. LVS provides an additional layer on top of netfilter

and it's mostly kernel code base with an user space daemon
for control. In some cases, it's needed to use iptables to
mark packets and the support of content parsing is
performed using additional modules than iptables.

iptables
Load balancing with iptables implies the use of the xtables
extensions in order to build a set of rules that behave with
the desired scheduler and forwarding method. The
available forwarding methods includes sNAT and dNAT,
according to the transparency required in a certain
infrastructure.
The mechanism used in this case requires marking the
packets and then forwarding to the determined backend or
real server.
The backend health checks needs to be performed from
user space as a daemon at different layers (icmp, protocol
or application checks, etc.), as it's show in the Figure 1.

Figure 1. Load balancing with iptables approach.

With this approach, all the complexity of ruleset
management and health checks are moved to user space
and in the kernel only remains the packet handling,
obtaining very good results regarding the performance
required. But some concerns could raise into a problem
such as:

• The ruleset is handled sequentially which could
produce not desired side effects during the packet
handling.

• The marking and forwarding rules must be
synchronized in order to behave as expected.

nftables
For all these reasons, and following the approach
described, we propose to supply the features and

improvements needed within nftables in order to provide a
full featured load balancing tool.
Load balancing with nftables is possible through the
nftables infrastructure: nft libraries, nftables virtual
machine and it's instructions. Inherent properties like
dynamic ruleset and atomicity through nft scripting are
major keys regarding the reliability in this design and
avoid side effects concerns that raised the approach with
iptables.
Another enhancement in terms of performance and
throughput is the fact that matching packets is not needed
anymore as it's shown in the Figure 2, thanks to the
dynamic ruleset and maps structures.
Regarding the forwarding methods available in nftables it's
possible to provide sNAT and dNAT as the iptables
approach.

Figure 2. Load balancing with nftables design.

In this case, the user space daemon takes care of all the
complexity of the health checks at different layers and the
ruleset management, but in this case some concerns are
solved:

• The ruleset is handled atomically through a nft
ruleset batch and loaded by the nft virtual
machine.

• Only it's needed to manage the nat table, avoiding
marking packets.

Features to accomplish
The basic features that this new load balancing system with
nftables should provide in this first prototype are described
below.

Schedulers
The schedulers most used and required in this prototype
are:

• Round Robin.
• Weight.
• Least Connections.

Persistence
The persistence is required in this kind of technology, at
least:

• Persistence per source IP address.

Forwarding methods
The required forwarding methods to be implemented at
layer 4 are basically the following in terms of
transparency:

• sNAT (transparency off)
• dNAT (transparency on)

Health checks
The backends or real servers monitoring will be performed
in user space and at different layers, configurable regarding
the application or protocol used.

Good integration
The good integration with other features such as QoS and
filtering could be taken into account for every load
balancing service.

Use Cases
Some use cases with all these three solutions presented
with the basic and required features are shown in this
section, according to the example in the Figure 3.

Figure 3. Use cases environment.

Round Robin LB with LVS
According to the given scenario, a simple load balancing
service can be created with the 3 commands shown below.

ipvsadm -A -t 192.168.0.40:80 -s rr

ipvsadm -a -t 192.168.0.40:80 -r 192.168.100.10:80 -m

ipvsadm -a -t 192.168.0.40:80 -r 192.168.100.11:80 -m

The first command creates the virtual service over a certain
IP address and one port with a round robin scheduler. The
last 2 commands add the backends into the virtual service
created.

Round Robin LB with iptables
With the iptables approach, a simple load balancer can be
built with these two rules shown below.

iptables -t nat -A PREROUTING -m statistic --mode nth \

 --every 2 --packet 0 -d 192.168.0.40 -p tcp \

 --dport 80 -j DNAT --to-destination 192.168.100.10:80

iptables -t nat -A PREROUTING -m statistic --mode nth \

 --every 2 --packet 1 -d 192.168.0.40 -p tcp \

 --dport 80 -j DNAT --to-destination 192.168.100.11:80

The ruleset changes the prerouting chain in the nat table in
order to forward the packets detected in the given virtual
service under a certain conditions. In this case, the nth
extension is used to match the packets every 2 packets per
each backend.

Round Robin LB with nftables
The nftables proposal is to have, for this simple case, just
one rule to build a load balancer.
Once the table lb and the chain prerouting are created and
associated to the nat prerouting hook, with just one rule we
can build a round robin scheduler over a certain virtual
service over one IP address and one TCP port, as shown in
the commands below.

table ip lb {

 chain prerouting {

 type nat hook prerouting priority 0; policy accept;

 ip daddr 192.168.0.40 tcp dport http dnat nth 2 map {

 0: 192.168.100.10,

 1: 192.168.100.11

 }

 }

}

In this rule the virtual service is associated to the
destination IP address and TCP port indicated in the given
scenario. Then, it's needed to set the forwarding
mechanism to dNAT and the scheduler method to nth every
2 packets. The map created will allow to associate the
packet numbering with the backend or real server to be
used.
Note that by the time this paper is written, the nth
instruction is not consolidated in nftables yet, so the syntax
could change.

Weight LB with LVS
The commands below are used in LVS to create a virtual
service with a weighed scheduling method.

ipvsadm -A -t 192.168.0.40:80 -s wrr

ipvsadm -a -t 192.168.0.40:80 -r 192.168.100.10:80 \

 -m -w 100

ipvsadm -a -t 192.168.0.40:80 -r 192.168.100.11:80 \

 -m -w 50

The first command creates the virtual service over a certain
IP address and one port with a weight scheduler. The last 2
commands add the backends into the virtual service created

setting a certain weight per backend, with values 100 and
50 respectively in this case.

Weight LB with iptables
In this case, the iptables approach is able to perform a
weighted scheduling method using the statistic extension,
random mode and with the appropriated probability per
backend, converting a certain weight to probability with an
easy algorithm.

iptables -t nat -A PREROUTING -m statistic \

 --mode random --probability 1 -d 192.168.0.40 \

 -p tcp --dport 80 -j DNAT \

 --to-destination 192.168.100.10:80

iptables -t nat -A PREROUTING -m statistic \

 --mode random --probability 0.33 -d 192.168.0.40 \

 -p tcp --dport 80 -j DNAT \

 --to-destination 192.168.100.11:80

The ruleset changes the prerouting chain in the nat table in
order to forward the packets detected in the given virtual
service. One rule per backend will be enough in this simple
use case using the statistic extension to match the packets
randomly with the probability calculated.
The first backend will have twice the weight of the second
backend, for this reason, it's used a probability of 1 to
match the first rule and the rest 0.33 will pass through the
second rule.
The first rule will ensure that all the packets through the
virtual service will be marked.

Weight LB with nftables
In this use case, nftables is able to provide a weighted
scheduler setting up one dynamic rule.
As the last use case, once the table lb and the chain
prerouting are created and associated to the nat prerouting
hook, with just one rule we can build a weigthed scheduler
over a certain virtual service over one IP address and one
TCP port, as shown in the commands below.

table ip lb {

 chain prerouting {

 type nat hook prerouting priority 0; policy accept;

 ip daddr 192.168.0.40 tcp dport http dnat \

 random upto 100 map {

 0-66: 192.168.100.10,

 67-99: 192.168.100.11

 }

 }

}

In this rule the virtual service is associated to the
destination IP address and TCP port indicated in the given
scenario. Then, it's needed to set the forwarding
mechanism to dNAT and the scheduler method to random.
The map created will allow to associate the random range

according to the weight for every backend with the real
server to be used.
Note that by the time this paper is written, the random
instruction is not consolidated in nftables yet, so the syntax
could change.
This weighted scheme in nftables will be used as a base in
order to create more complex weighted schedulers, as it's
described in the following sections.

Weight LB Multiport with LVS
The multiport case in LVS implies the use of iptables in
order to mark the packets that matches the virtual service
enabling the multiport extension, as it's shown below.

iptables -A PREROUTING -t mangle -d 192.168.0.40 \

 -p tcp -m multiport --dports 80,443 -j MARK \

 --set-mark 1

ipvsadm -A -f 1 -s wrr

ipvsadm -a -f 1 -r 192.168.100.10:0 -m -w 100

ipvsadm -a -f 1 -r 192.168.100.11:0 -m -w 50

The iptables command in the mangle table takes care of
matching and marking the packets that applies to the
multiport virtual service and the given IP address.
The mark value assigned to the matched packets will be
used in order to create the virtual service with the weighted
scheduler. After that, it'll be needed to add the backends
into the new virtual service with the weight value for each
one.

Weight LB Multiport with iptables
The iptables approach with multiport is similar to the last
use case, as the multiport match is completely compatible
with the ruleset presented.

iptables -t nat -A PREROUTING -m statistic \

 --mode random --probability 1 -d 192.168.0.40 \

 -p tcp -m multiport --dports 80,443 -j DNAT \

 --to-destination 192.168.100.10:80

iptables -t nat -A PREROUTING -m statistic \

 --mode random --probability 0.33 -d 192.168.0.40 \

 -p tcp -m multiport --dports 80,443 -j DNAT \

 --to-destination 192.168.100.11:80

The multiport match will be required in every backend
rule.

Weight LB Multiport with nftables
Nftables supports natively multiport capabilities, so it's as
simple as including the port list in the weight use case.

table ip lb {

 chain prerouting {

 type nat hook prerouting priority 0; policy accept;

 ip daddr 192.168.0.40 tcp dport { http,https } dnat \

 random upto 100 map {

 0-66: 192.168.100.10,

 67-99: 192.168.100.11

 }

 }

}

Note that by the time this paper is written, the random
instruction is not consolidated in nftables yet, so the syntax
could change.

Weight LB IP Persistence with LVS
The persistence is required in many applications and LVS
integrates it quite easily associating the client source IP
address to a certain backend during a configured timeout,
as it's shown below.

ipvsadm -A -t 192.168.0.40:80 -s wrr -p 300

ipvsadm -a -t 192.168.0.40:80 -r 192.168.100.10:80 \

 -m -w 100

ipvsadm -a -t 192.168.0.40:80-r 192.168.100.11:80 \

 -m -w 50

The last parameter indicates that the persistence timeout
will be 300 seconds.

Weight LB IP Persistence with iptables
The IP persistence approach with iptables is complex as it's
not supported natively. In order to be able to associate
source IP addresses with backends it's used the recent
extension, creating one source IP addresses list per
backend.
In this complex use case with iptables, two steps will be
needed, one step to mark the new connections packets,
through the mangle table, and then a second step to
forward the packets according to the mark through the nat
table, where every mark will be associated to a certain
backend, as it's shown below.

iptables -t mangle -A PREROUTING -j CONNMARK \

 --restore-mark

iptables -t mangle -A PREROUTING -m statistic \

 --mode random --probability 1 -d 192.168.0.40 \

 -p tcp --dport 80 -j MARK --set-xmark 1

iptables -t mangle -A PREROUTING -m statistic \

 --mode random --probability 0.33 -d 192.168.0.40 \

 -p tcp --dport 80 -j MARK --set-xmark 2

iptables -t mangle -A PREROUTING -m recent \

 --name "mark1_list" --rcheck --seconds 120 \

 -d 192.168.0.40 -p tcp --dport 80 -j MARK \

 --set-xmark 1

iptables -t mangle -A PREROUTING -m recent \

 --name "mark2_list" --rcheck --seconds 120 \

 -d 192.168.0.40 -p tcp --dport 80 -j MARK \

 --set-xmark 2

iptables -t mangle -A PREROUTING -m state --state NEW \

 -j CONNMARK --save-mark

iptables -t nat -A PREROUTING -m mark --mark 1 -j DNAT \

 -p tcp --to-destination 192.168.100.10:80 -m recent \

 --name "mark1_list" --set

iptables -t nat -A PREROUTING -m mark --mark 2 -j DNAT \

 -p tcp --to-destination 192.168.100.11:80 -m recent \

 --name "mark2_list" --set

The mangle rules ensure that the packets are going to be
marked following the weighted scheduling method with
the weight selected per backend. This is performed with
the statistic match and random mode.
After that, it's needed to check if the IP address has already
been used and stuck to any backend. The match recent is
used to generate persistence creating one source IP list per
backend with a certain timeout. If during the IP source list
checking the IP is found, then the packet will be marked
with the mark of the selected backend.
Finally, the packet will be forwarded through the nat table
to the backend determined in the mark and store in the list
the new IP address entry if needed.
For this approach, three rules will be needed per backend:
ensure packet mark, check client persistence and forward
packet storing the IP address in the list.
But this iptables approach with IP persistence provides
several concerns like:

• The packet must pass through several mangle
rules until it determines the most affordable
backend, with a complexity of 3n.

• The need of one list per backend implies to check
every list and perform several lookups which is
expensive.

Weight LB IP Persistence with nftables
The persistence in nftables is not natively integrated but it
could be easily built using dynamic maps. With nftables
some concerns regarding the iptables approach are going to
be solved. Firstly, the packets are not needed to be marked
in order to be forwarded and there is only one list per
virtual service instead of per backend. With this prototype,
it's easy to configure but also we could get much more
performance.

table ip lb {

 map dnat-cache { type ipv4_addr : ipv4_addr; \

 timeout 120s; }

 chain cache-done { dnat ip saddr map @dnat-cache }

 chain prerouting {

 type nat hook prerouting priority 0; policy accept;

 ip saddr @dnat-cache goto cache-done

 ip daddr 192.168.0.40 tcp dport http dnat \

 random upto 100 map {

 0-66: 192.168.100.10,

 67-99: 192.168.100.11

 }

 map dnat-cache add { ip saddr : ip daddr }

 }

}

Once the new lb table is created, it's needed to add a
dynamic map where the association between clients source
IP addresses and backend are going to be stored with a
timeout, in this case it's called dnat-cache.
The chain cache-done is executed once the IP matches in
the list in order to perform directly the forward to the
backend associated. The lookup it's going to be performed
quite fast in this case.
The prerouting chain provides all the scheduling logic and
the source IP cache list maintenance. Firstly, it'll be needed
to link the chain with the corresponding hook. Then, check
in the cache list if the IP already exists in the list and jump
to the cache-done chain without return.
After that, it's needed to apply the dynamic rule which
determines the backend to be selected for any new
connection following the weighted base, as it has been
shown in the cases before.
Finally, add in the dynamic map the IP address the new
associations between source IP address and backend.
Note that by the time this paper is written, the instructions
are not consolidated in nftables yet, so the syntax could
change.
This weighted scheme with IP persistence in nftables will
be used as a base in order to create more complex weighted
schedulers with IP persistence, as it's described in the
following sections

Weighted Least Connections LB with nftables
The weighted nftables schema shown before can be used as
a base to build more complex scheduling methods like
weighted least connections. In this use case, the user space
daemon is able to gather the number of connections for
every backend from the conntrack as it's show in the
Figure 4. The user space daemon updates the weight for
every backend according to this number of established
connections, more established connections to a certain
backend implies less dynamic weight assigned.

Figure 4. Weighted Least Connections LB with nftables.

Weighted Least Response LB with nftables
In this use case, the user space daemon is able to gather the
response time for every health check performed against
every backend. All this valuable information is used to
estimate the best weight for every backend, more response
time spend for a backend implies less dynamic weight
assigned.

The Figure 5 represents the behavior of this use case.

Figure 5. Weighted Least Response LB with nftables.

Weighted Least CPU Load LB with nftables
The weighted Least CPU Load use case needs to gather the
CPU Load of every backend in order to estimate the
dynamic weight for each one of them.
In this use case, the user space daemon is able to gather the
CPU load through SNMP checks against the backends,
estimating the dynamic weight where more load implies
less weight.
The Figure 6 represents the behavior of this use case.

Figure 6. Weighted Least CPU load LB with nftables.

Similar cases could be performed through SNMP scheduler
for memory, network consumption, etc.

Work to do
This prototype is still under design and some developments
will be needed in order to be able to fulfill the
requirements to provide load balancing with nftables:

• Implement some native functions in nftables:
random and nth instructions and some maps
enhancements.

• User space daemon nft-lbd: health checks support,
dynamic weight (least connections, least response,
etc.)

Conclusions
The final conclusions regarding the prototype of load
balancing with nftables are:

• Simplify the kernel infrastructure, as according to
this prototype the complexity is moved to user
space.

• Consolidate the kernel development, as nftables
could join the efforts in order to avoid duplicated
work, better maintenance and native LB support.

• Unique API for network management, as nftables
could be able to provide an user interface for
firewalling, QoS and load balancing as well.

Even more than that, it's able to build a high performance
load balancer with nftables.

Acknowledgements
From the Zen Load Balancer Team, we would like to thank
Pablo Neira for his support during the preparation of this
talk and mentoring to implement this prototype.

Bibliography
1. Nftables wiki, http:// http://wiki.nftables.org
2. Zen Load Balancer documentation,
http://www.zenloadbalancer.com/documentation/

Author Biography
Laura García studied Computer Science in the University
of Seville and she has been a Software Engineer for HP
and Schneider Electric. Over 10 years of experience with
embedded Linux systems. Currently, she is CEO and co-
founder of Sofintel IT Engineering SL company in order to
continue the development and evolution of the open source
project Zen Load Balancer.

http://http://wiki.nftables.org
http://www.zenloadbalancer.com/documentation/
http://http://wiki.nftables.org

	Introduction
	Load Balancing Solutions
	LVS
	iptables
	nftables

	Features to accomplish
	Schedulers
	Persistence
	Forwarding methods
	Health checks
	Good integration

	Use Cases
	Round Robin LB with LVS
	Round Robin LB with iptables
	Round Robin LB with nftables
	Weight LB with LVS
	Weight LB with iptables
	Weight LB with nftables
	Weight LB Multiport with LVS
	Weight LB Multiport with iptables
	Weight LB Multiport with nftables
	Weight LB IP Persistence with LVS
	Weight LB IP Persistence with iptables
	Weight LB IP Persistence with nftables
	Weighted Least Connections LB with nftables
	Weighted Least Response LB with nftables
	Weighted Least CPU Load LB with nftables

	Work to do
	Conclusions
	Acknowledgements
	Bibliography
	Author Biography

